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Abstract

In order to transform software requirements
into code, we first need to identify and refine
the existing ambiguities. In this paper, we in-
troduce a systematic approach towards detect-
ing ambiguities that depends on two key ele-
ments: a grammar that specifies the unambigu-
ous syntax, and second, an NLP model to map
software requirements to its terminal symbols.

1 Introduction

As shown in Figure 1, our research is closely re-
lated to two major disciplines: machine program-
ming and ambiguity analysis in requirement engi-
neering.

Machine programming is defined as using either
rule-based (Lau et al., 2003) or probabilistic tech-
niques (Balog et al., 2016) to turn a description
of code into code. In the NLP community there
has been a lot of research on converting code to
comment. (Hu et al., 2018) for example uses NLP
techniques to generate comments for Java code.
However the inverse conversion, comment to code,
is much more challenging due to structured nature
of code where only a specific syntax is accepted by
compilers. Due to this challenge, generated code by
existing approaches does not necessarily compile.
To resolve this problem, Some techniques like (Ra-
binovich et al., 2017) try to generate code based on
an abstract syntax tree, however, these approaches
only consider description that is completely clear
and does not span beyond a few sentences. The
description is either in shape of a few examples
(Gulwani, 2016) or provided via natural language
requirements to convey user’s intention. As ex-
plained in (Gottschlich et al., 2018) intention along
with invention and adaptation are three pillar of
machine programming.

In requirement engineering community there is
an area of research focused on detecting ambigui-

ties in requirements. (Kamsties et al., 2001) identi-
fies 5 different types of ambiguities that could exist
in software requirement. Both heuristics based ap-
proaches (Yang et al., 2010) and NLP techniques
(Dalpiaz et al., 2018) have been applied to de-
tect these ambiguities. However, the existing tech-
niques try to detect ambiguities in a vacuum, i.e.,
just by looking at specified requirements without
considering the context which gives meaning to
words and sentences used to express the require-
ments. This is probably due to the assumption that
the context is normally known to a human program-
mer but clearly this is not the case when a machine
tries to generate code.

When provided with requirements for a typical
application, we do need to have some contextual in-
formation to interpret them – context being defined
as entities, their attributes, actions that can take
place on entities and qualifiers for either entities
or actions. By relying on context defined in this
manner, we can expand the definition of ambigui-
ties beyond just the grammatical ambiguities. We
categorize ambiguities into three types:

• Isolated ambiguities are introduced when a
requirement is considered in isolation but can
be clarified by information available in other
requirements. For example. in requirement:
”a [late] order should be cancelled”, the brack-
eted term, late, is ambiguous; however, given
another requirement: ”An order is considered
late if not delivered within 30 minutes”, the
ambiguity disappears.

• Contextual ambiguities are introduced by a
missing context, when the term is not un-
derstood by the underlying processing sys-
tem. For example, in ”[order] should be [can-
celled] if not [delivered] within 30 minutes”,
the bracketed terms are ambiguous in absence
of a delivery context.



• Grammatical ambiguities are introduced in
three different cases: first, when a term has
more than one meaning (lexical); second,
when there are multiple ways of attributing
one part of speech to another (syntactic); and
third when there is a complex phrase with a
specific meaning (semantic). .

Figure 1: The hatched area on the right is neglected by
both machine-programming and requirement engineer-
ing.

Figure 2 shows a simple view of the end-to-end
process of converting requirements into code. It de-
pends on extracting information from requirements,
representing them in the form of a context graph
and then using it to identify existing ambiguities in
requirements and to generate code.

Figure 2: Transforming ambiguous natural-language
based requirements to code requires three major ele-
ments: context, grammar, and representation

To achieve our ultimate goal of generating appli-
cations from requirements, we suggest the follow-
ing 4 processes and tools:

1. A grammar and set of constituents used to ex-
tract key information from requirements spec-
ified in natural language.

2. A graph representation used to organize the
requirements in the shape of a graph where ad-

jacent nodes contain information about related
entities.

3. A process to detect ambiguities in the require-
ments

4. A process to eliminate the ambiguities either
automatically using the information already
available in the requirements or by interacting
with the user

In this paper we focus on the first item in the
above list. The approach we use is to first define a
grammar used to interpret requirements. We will
then try to map requirements to the terminal sym-
bols of this grammar.

2 Description of Problem

We try to address a specific problem: How can
we extract and interpret the information in require-
ments?

This is a mapping problem from a set of plain
requirements < = {r1, r2, ..., rn} to a grammar
defined by N → (N ∪ Σ), where N and Σ are
non-terminal, and terminal symbols respectively.

An example can make our problem more clear.
Consider a requirement stating that ”If user picks
the first choice, he should be shown a white bal-
loon below the text”. This requirement should be
mapped to the following production rules: REQ
→ IFF, IFF → PRE REQ, PRE → LEX, and so
on. Here REQ, IFF, PRE, and LEX denote require-
ment and conditional, predicate, and logical expres-
sion statements respectively and are some of the
non-terminal symbols in our grammar. Note that
each symbol has several definitions relying on other
lower level terminal and non-terminal symbols. We
can apply bottom-up deterministic or stochastic
parsing algorithms like CYK (Kasami, 1966) or
inside-outside (Lari and Young, 1990) algorithms
to see if a mapping to the terminal symbols does
exist. In this example, ”picks” and ”white balloon”
will be eventually mapped to ACT and ENT termi-
nals that denote action and entity respectively.

Defining a grammar that fits our purpose is not
trivial. Competing criteria should be satisfied with
this grammar: the grammar should be expressive
enough to be able to generate majority of the de-
sired applications yet it should not contain lots
of terminal symbols so that we could apply NLP
techniques to mapping the requirements to these
symbol with a high performance.
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# Rule Explanation
1 REQ→ (IFF|LOP|INP|SHO) | (IFF|LOP|INP|SHO REQ) Requirement
2 IFF→ ([if] PRE REQ) | (REQ [if] PRE) Conditional
3 PRE→ LEX|IFF Predicate
4 LOP→ (REQ (FRE|UNT)) | (REQ (FRE|UNT) REQ) | Loop

((REQ FRE)|UNT)
5 UNT→ [until] PRE Until
6 SET→ [set] ENT [to] LEX|MEX|FIX Set
7 FIX→ NUM|TEX Fixed value
8 OPE→ FIX|STA|QLF Operand
9 LEX→ (OPE LOP OPE) | (ACT QLF) Logical expression
10 MEX→ OPE MOP OPE Mathmatical Expression
11 STA→ (ENT[’S] ENT) | (ENT [of] ENT) State
12 ENA→ (ENT ACT) | (ENT ACT ENT) | (ACT ENT) Entity-Action
13 INP→ [enter] ENT | STA Input
14 SHO→ [show] ENT POS | STA Show

Table 1: Context Free Grammar

Note that once we have a grammar we can use
it to detect ambiguities: we can detect a syntactic
ambiguity when at least one part of the require-
ment cannot be mapped to any production rule in
the grammar. For parts that can be mapped to the
grammar, we will then try to look for the words
under the role of the terminal symbols assigned to
them within a set of pre-defined context modules.
These modules define what is known. If a match
cannot be found, we mark it as a contextual am-
biguity. The basic context that we call the APP
context defines entities like user, app, menu, and
actions like launching, showing, entering, navigat-
ing, and so on. In addition to the APP context, we
can have domain and sub-domain specific contexts.
For example a driving context can define entities
like driver, speed and actions like driving, arriving
and qualifiers like carelessly, fast, slow, and so on.
In the previous example, ”picks” and ”white bal-
loon” can be marked as contextual ambiguities if
they are not defined in any of the provided context
modules as action and entity.

3 Approach

We start with defining our grammar. We show how
this grammar can be used to define applications
and also point out its limitations. Once we have the
grammar defined the next step would be finding a
way to map the requirements to the terminal sym-
bols. We will look at several NLP techniques for
doing so.

3.1 Grammar

We have defined a grammar with 14 production
rules shown in Table 1. Each of these production
rules maps a non-terminal symbol to a set of either
keywords or terminal symbols. We have designed
this grammar to make sure it contains enough in-
structions to generate fairly simple applications
that can interact with the user via a terminal or
simple web or mobile apps that do not include com-
plex visuals to take input, show output, and execute
logical and mathematical expressions. Extending
this grammar to support more complex applications
will be an ongoing research.

Table 2 shows the non-terminal symbols for the
grammar. We need to map these symbols to re-
quirements for information extraction and ambi-
guity detection. We will go through the mapping
process in the next section.

3.2 Annotated Dataset

We have created a dataset called Reqset, that con-
tains requirements on different types of apps. Re-
qset contains around 4500 tagged words and can
be used for any NLP research on software require-
ments. 1. We have used a subset of non-terminal
symbols specified in Table 2 to tag Reqset. These
symbols include: ENT, ACT, QLF, POS, FIX, INP,
SHO, ENT, and IFF. FIX is used to denote either
NUM or TEX, and INT and SHO to denote [enter]
and [show]. The reason we have not included all

1Reqset is available at
https://toorajhelmi.github.io/home/publication/parsing
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Symbol Explanation
ENT Entity
ACT Action
QLF Qualifier
POS Position
MOP Mathematical Operations: +, - ,...
LOP Logical Operations: and, or , ...
TEX Texts
NUM Mumbers
[show] Any verb that indicates

showing something to the
user

[enter] Any verb that indicates
taking an input from the user

[if] Any word that indicates a
conditional statement

[of] [’s] Any proposition
[set] Any verb that indicates

setting an entity to a value
[to] Used with set
[until] Any word that indicates

trigger of an event

Table 2: Non-terminal symbols

the symbols in Table 2 is due to two reasons: first,
using more labels has an adverse effect on accuracy
of our NER model. Second, once this basic set of
tags are detected, we can rely on other techniques
like dependency parsing (Chen and Manning, 2014)
or semantic role labeling (Palmer et al., 2010) to
extract other information.

Table 3 lists the apps are included in Reqset
which contain 5 terminal apps, 3 desktop apps, and
one mobile app. As can be observed from Figure
3, ENT and O (null) have the highest frequencies
while IFF and INP have the lowest ones. This
distribution is just a natural consequence of using
English to describe software requirement where
most of the words are nouns in English (Tsurukab-
uto) and conditional and input statements happen
less frequently than other type of statements in pro-
grams.

3.3 Information Extraction

We have trained two different models on Reqset 2.
The first model shown in Figure 4 is a BI-LSTM,
linear-chain CRF model that has been shown to
perform very well on NER tasks (Ma and Hovy,

2Code for these models is available at
https://toorajhelmi.github.io/home/publication/parsing

App Description
Trading A Terminal app to buy and

sell stocks
Tic Tac Toe The terminal version of Tic

Tac Toe game.
Word Guess A terminal app to guess a

word.
News A desktop app to subscribe to

see the news.
Food Delivery A mobile app for ordering

food.
Calendar A desktop calendar app to

manage events
Bank A terminal app used by bank

tellers.
Time Card A terminal app to report time

worked.
Alarm A desktop app to set alarms.

Table 3: Non-terminal symbols

2016). The input sentences are padded to have a
fixed length of 50. The first layer is an embed-
ding layer that maps each word to a 20 dimensional
vector. The second layer is a bi-directional LSTM
layer with 50 cells that takes the embedded vectors
one at a time and share their states with the neigh-
bouring cells in both directions. This allows the
network to remember the entire sequence. The last
layer is a linear chain CRF layer (Lafferty et al.,
2001) that considering all the previous input words
and their predicated labels, generates probabilities
for each of the existing labels.

Figure 3: Distribution of tags on Reqset

We also fine-tuned BERT (Devlin et al., 2018) on
Reqset. The reason for selecting this model was to
potentially get a better result given the fairly small
size of our dataset. To use this model we padded
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Figure 4: Model 1 is comprised of three layers: Embed-
ding, BILSTM, and linear chain CRF

our sentences to have a fixed size of 50 words.
BERT uses a special tokenizer which breaks the
words if faced with words that do not exist in Word-
Piece (Schuster and Nakajima, 2012) vocabulary.
In such cases, we used the original word’s label for
each of the generated pieces. However, to make
sure it does not cause problems during prediction
and scoring we applied the following correction
mechanisms: First, if a word is broken to multiple
pieces, we used the label with highest frequency
among pieces as the word’s label. Second, we used
the reconstructed word label to calculate the test
scores.

4 Experiments

We ran experiment to train our models on Reqest
to predict each of our labels. We used require-
ments specific to ”Time Card” and ”Alarm” apps
for testing and the rest of the requirements for train-
ing. This resulted in 3459-word training and 930-
word testing sets. The training set was spitted 9
to 1 across training and validation. We trained our
model with small batches of size 2 over 50 to 100
epochs. In order to measure the impact of adding
more apps to Reqset we trained our models several
times by incrementally adding requirements one
app at a time. We saw an average increase of 0.27
on F1 score per each 100 words.

5 Analysis and Discussion

As shown in Table 4, both models provided compa-
rable F1 scores, however, the first model resulted
in a smaller standard deviation across F1 scores for
individual labels.

Table 5 shows the performance of the models on
a test sentence. We observe that model 1 (BILSTM-
CRF) provides a much better accuracy (82%) com-
pared to model 2 (BERT), although they both have
the same macro and micro F1 scores. Such a sig-
nificant difference across these models can be ex-
plained by the standard deviation on F1-scores each

model produces for individual labels. As shown in
Table 4 the standard deviation for model 1 and 2 are
and 0.19 and 0.28 respectively. As shown in Figure
5, this means that model 1 provides a more consis-
tent performance across different labels whereas
model 2 does very good for some labels but does
poorly for others.

Each model performs better for a specific set
of labels. In general, model 1, provides a better
performance on labels that depend on the syntax
and model 2 provide a better performance on la-
bels that depend on semantics. For example ACT
and INP are normally a verb, ENT is normally a
noun - either object or subject - and FIX is often
surrounded by quotes. BILSTM and CRM compo-
nents in model 1 are better equipped to detect such
syntactic patterns and therefore offer a better per-
formance for these labels. However, IFF and POS
are normally assigned to words with similar mean-
ings (if, when, whenever for IFF and below, above,
to the left, ... for POS). BERT is better equipped
to detect such semantic patterns and hence offers a
better performance for these labels.

Some of the labels have been detected poorly
by either model. This could be explained by the
different usages of these labels. For example, QLF
label is used to either qualify an action, e.g., driving
[carelessly], or qualifying an entity, e.g., the [main]
page. INP can refer to entering text using key-
board (enter, press, type) or tapping and clicking
on non-terminal apps. On the other side, labels that
are used on relatively defined patterns are detected
much better. For example, IFF often comes at the
beginning of the sentence and expressed using ”if”
synonyms.

The relatively good performance on ENT can be
attributed to the frequency of having ENT in our
dataset. As shown in Figure 3, it makes up around
half of the labels.

6 Conclusion

In this work, we looked at using two tasks that
can assist us with detecting ambiguities in require-

Model Mi-F1 Ma-F1 STD
BI-LSTM-CRF 41 41 0.19

Fine-Tuned BERT 43 39 0.28

Table 4: Experiment Results. Mi-F1, and Ma-F1 de-
note micro and macro F1 scores. STD denotes the stan-
dard deviation across F1 scores for individual labels.
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Figure 5: F1 scores that each model produces for dif-
ferent labels. Model 1 has a lower standard dev.

Word True Tag M1 Tag M2 Tag
IF IFF IFF IFF

USER ENT ENT IFF
PICKS ACT QLF ENT
THE O O ENT

FIRST ENT ENT O
CHOICE ENT ENT ENT

, O O O
HE ENT ENT O

SHOULD O O ENT
BE O O ENT

SHOWN SHO SHO ENT
A O O O

WHITE ENT ENT O
BALLOON QLF QLF O

BELOW POS POS O
THE O POS O

TEXT ENT ENT O
Accuracy 82% 35%

Table 5: Results on a benchmark requirement. M1 and
M2 denote the BILSTM-CRF and BERT models. M2
does a much better job predicting the labels.

ments. First, we introduced a grammar to identify
the interpretable structures and used it to decide
whether a provided requirement is ambiguous or
not; Second, we tried two different NLP models
to map the terminal symbols of the grammar to
requirements. The BILSTM-CRF model provided
promising results.

7 Future Work

First, we would like to improve the performance of
our NER. We are going to achieve this goal via dif-
ferent means, First, by expanding Reqset to include
more requirements. Another way is to try other
models including a combined BERT/CRF model
that is equipped to consume both syntactic and

semantic patterns. Another model we would like
to build is what we call a ”jagged NER” architec-
ture. Jagged NER is going to be similar to Nested
NER (Kamsties et al., 2001) but instead of having
a rectangular shape, it will be jagged allowing us
to detect different nested depths for different parts
of the sentence. This could be beneficial since
the nested segments in codes can have different
depths. Third, we would like to include other fea-
tures like syntactic and semantic dependencies in
our modeling. Techniques like dependency parsing
(Chen and Manning, 2014) and semantic role label-
ing (Palmer et al., 2010) can help us provide such
features.

Second, once we can predict labels at a high level
of accuracy, we will turn our focus on applying the
grammar to detect ambiguities in the requirements
and we will look at approaches that can help us
refine those ambiguities. Our first attempt will be
to build a context graph that can link requirements
and help us extract relevant information from multi-
ple requirements; second, by relying on techniques
like knowledge graphs and advance language mod-
els like BERT (Devlin et al., 2018) or GPT (Brown
et al., 2020) we might be able to automatically elim-
inate some of the ambiguities; Third, we are going
to build a conversational AI system that can interact
with the user to refine the remaining requirements.

8 Related Research

We review the existing research in three related ar-
eas: ambiguity detection in software requirements,
NER, and incorporating context.

With respect to ambiguity detection in software
requirements. In (Kamsties et al., 2001) authors
divide ambiguities into 5 categories: lexical, sys-
tematic, referential, discourse, and domain classes.
They offer a UML-based heuristic approach to de-
tect some of these ambiguities. (Yang et al., 2010)
categorizes ambiguities into nocuous - which oc-
curs when text is interpreted differently by differ-
ent readers - and innocuous - if different readers
interpret it in the same way, even though struc-
tural or semantic hints exist. They develop a con-
cept called ambiguity threshold and use it with
a heuristic-based approach to detect the ambigui-
ties. (Mishra and Sharma, 2019) tries to identify
and detect domain-specific semantic ambiguities
in natural language text. They apply an NLP tech-
nique based on word embedding to detect ambigu-
ous words and show that word-embedding-based

6



techniques are very effective in identifying domain
specific semantic ambiguities.

When it comes to NER, there are two areas of
research that overlaps with our work. First area
is around models that can detect nested relation-
ships. Although we did not try to use a nested
model in this paper, programming code is filled
with nested structured and therefore we think us-
ing nested models can offer a better performance.
(Ju et al., 2018) attempts to identify nested enti-
ties by dynamically stacking flat NER layers where
each layer consist of BILSTM-CRF cells. They
apply their models to a nested genetic dataset to
detect nested relationships across genes, DNAs,
and proteins. (Finkel and Manning, 2009) built a
model using a discriminative constituency parser
applied to detected nested relationships in news
and biomedical datasets. The second area of over-
lap is based on detecting entities on mixed text and
code media. (Tabassum et al., 2020) introduces a
new corpus for the computer programming domain,
consisting of 15,372 sentences annotated with 20
fine-grained entity types extracted from StackOver-
flow and trained a model based on BERT to detect
8 code-related and 12 natural language entities. (Ye
et al., 2016) provides another StackOverflow based
NER corpus.

Lastly, on incorporating contextual or external in-
formation in NLP, (Long et al., 2017) proposes two
recurrent neural network architectures which make
use of external knowledge in the form of entity de-
scriptions and shows that the performance is signif-
icantly better at the rare entity prediction task when
using external resources. (Liu and Singh, 2004)
introduced ConceptNet knowledge base which is
a semantic network consisting of over 1.6 million
assertions of commonsense knowledge encompass-
ing the spatial, physical, social, temporal, and psy-
chological aspects of everyday life. Having access
to such a knowledge base can assist us in remov-
ing some of the ambiguities without requiring an
explicit context module.
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